REVIEW

Opportunities and Limitations for Image-Based
Remote Sensing in Precision Crop Management

M. S. Moran,* Y. Inoue,! and E. M. Barnes*

This review addresses the potential of image-based
remote sensing to provide spatially and temporally dis-
tributed information for precision crop management
(PCM). PCM is an agricultural management system de-
signed to target crop and soil inputs according to within-
field requirements to optimize profitability and protect
the environment. Progress in PCM has been hampered
by a lack of timely, distributed information on crop and
soil conditions. Based on a review of the information re-
quirements of PCM, eight areas were identified in which
image-based remote sensing technology could provide in-
formation that is currently lacking or inadequate. Recom-
mendations were made for applications with potential for
near-term implementation with available remote sensing
technology and instrumentation. We found that both air-
craft- and satellite-based remote sensing could provide
valuable information for PCM applications. Images from
aircraft-based sensors have a unique role for monitoring
seasonally variable crop/soil conditions and for time-spe-
cific and time-critical crop management; current satellite-
based sensors have limited, but important, applications;
and -upcoming commercial Earth observation satellites
may provide the resolution, timeliness, and high quality
required for many PCM operations. The current linita-
tions for image-based remote sensing applications are
mainly due to sensor attributes, such as restricted spec-
tral range, coarse spatial resolution, slow turnaround
time, and inadequate repeat coverage. According to ex-
perts in PCM, the potential market for remote sensing
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products in PCM is good. Future work should be focused
on assimilating remotely sensed informa- tion into ex-
isting decision support systems (DSS), and conducting
economic and technical analysis of remote sensing appli-
cations with season-long pilot projects. ©Flsevier Sci-
ence Inc., 1997

INTRODUCTION

In the late 1970s and early 1980s, a great research effort
was focused on the use of multispectral images for crop
inventory and crop production. The Large Area Crop In-
ventory Experiment (LACIE) demonstrated the feasibil-
ity of utilizing satellite-based multispectral data for esti-
mation of wheat production (MacDonald and Hall, 1980)
based on techniques that are still in use today by crop
production forecasters in the USDA Foreign Agricultural
Service. The AgRISTARS program conducted by the
USDA, NASA, and NOAA extended this methodology to
include other crops and regions and expanded the re-
search to encompass larger agricultural issues. The LA-
CIE and AgRISTARS programs not only produced ro-
bust methods for regional crop identification and condi-
tion assessment, but also defined the physics of relations
between spectral measurements and biophysical proper-
ties of crop canopies and soils. It was widely recognized
that this basic scientific and technical knowledge had
great potential to be used by farmers for making day-to-
day management decisions.

Bauer (1985) summarized the underlying premise of
using optical remote sensing for crop condition assess-
ment. That is, multispectral reflectances and tempera-
tures of crop canopies relate to two basic physiological
processes: photosynthesis and evapotranspiration. In both
processes, LAI, the ratio of leaf surface area to ground
area, is the fundamental canopy parameter, and crop de-
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velopment stage is another crop parameter of major im-
portance. He identified an emerging conceptual frame-
work in which spectral data were used in combination
with meteorological, soils, and other crop data to model
crop growth, condition, and yield. Jackson (1984) pre-
sented a similar view and evaluated current and future
remote sensing systems for use within such a framework
for farm management. His 20-year vision for an ideal sys-
tem included a fleet of autonomous satellites providing
frequent, high-resolution data with quick turnaround and
delivery to users. This vision may soon become reality
with the planned launch (1997-1998) of several commer-
cial satellites that are designed to provide multispectral
images with 3-day repeat coverage, 1-4 m spatial resolu-
tion, and delivery to users within 15 min from the time
of acquisition (Fritz, 1996). The synergy of such an im-
aging system with the scientific algorithms and models
developed over the past 30 years could provide detailed
crop and soil information to farm managers and crop
consultants at a finer temporal and spatial scale than
ever before.

Not coincidentally, this pending increase in informa-
tion supply coincides with advances in farm management
technology that will result in an acute demand for crop
and soil information. Recent advances in technology for
variable-rate production input applications, with concur-
rent advances in global positioning systems (GPS) and
geographic information systems (GIS), have provided
powerful analysis tools for farm management. This has
been termed “precision crop management (PCM)”, de-
fined as an information- and technology-based agricul-
tural management system to identify, analyze and man-
age site-soil spatial and temporal variability within fields
for optimum profitability, sustainability and protection of
the environment (Robert et al., 1995).

Variable rate technology (VRT), probably the best
developed part of the PCM system (Searcy, 1995), ap-
plies production inputs at rates appropriate to soil and
plant conditions within fields. Variable rate systems have
been demonstrated for several materials, including herbi-
cide (Mortensen et al., 1995), fertilizer (Fergusen et al.,
1995; Schueller, 1992), insecticide (Fleischer et al.,
1996), and seeds. Concurrent advances in GPS technol-
ogy have provided the moderately priced, accurate posi-
tioning system necessary for field implementation of
VRT (Palmer, 1995). These advances in location technol-
ogy have been combined with the ubiquitous use of GIS
by PCM workers (Usery et al., 1995) in the most ad-
vanced systems for PCM. For example, Hanson et al.
(1995) described a herbicide application system mounted
on a tractor with a GPS guidance system which was
linked to a digital weed map, allowing only weed-infested
areas of the field to be sprayed. The weak link in many
PCM systems is the availability of such maps of weeds,
insect infestations, crop nutrient deficiencies, and other
crop and soil conditions. Remotely sensed images ob-

tained with aircraft and satellite-based sensors have the
potential to provide such maps for the whole field, not
just sample sites, within the time and space requirements
of PCM applications.

It is this convergence of technological advances that
inspired this review of the potential for image-based re-
mote sensing to provide spatially and temporally distrib-.
uted information for PCM. In the next section, we re-
viewed the current and proposed methods for obtaining
information for PCM, with particular reference to the
published results of the 1994 International Conference
on Site Specific Management for Agricultural Systems
(Robert et al., 1995). Based on that review, we identified
eight areas in which remote sensing technology could
provide information that is currently inadequate or com-
pletely unavailable. We provided a review of recent ad-
vances in RS related to these eight areas. [For a general
review of remote sensing for assessing crop conditions,
readers should refer to reviews by Jackson (1984), Bauer
(1985), and more recently, Hatfield and Pinter (1993).]
With consideration of the technical limitations of cur-
rently available sensors and advances in image processing
techniques, recommendations were made for applica-
tions with potential for near-term implementation and
applications that deserve further research. An economic
analysis of these applications was not attempted, but it
should be considered in selecting the applications that
are most promising for commercial development.

REVIEW OF CURRENT METHODS FOR
OBTAINING INFORMATION FOR PCM

There are three basic types of information required for
PCM:

* information on seasonally stable conditions

* information on seasonally variable conditions

* information required to diagnose the cause of
the crop yield variability and develop a manage-
ment strategy

Since the designations of “seasonally stable” and “season-
ally variable” are not conventional PCM terminology, we
will define them here. Seasonally stable conditions are
those that are relatively constant through the crop grow-
ing season, such as yield-based or soil-based manage-
ment units, and only need to be determined preseason
and simply updated, when and if necessary. Seasonally
variable conditions are those that change continually
within the season, such as soil moisture, weed or insect
infestations, and crop disease, and need to be deter-
mined numerous times during the season for proper
management. The first two categories are based on the
assumption that the condition of interest (such as soil
physical properties, nutrient availability, or weed popula-
tion) is already defined, and information is needed to
spatially quantify the condition. The third category can



encompass both seasonally stable and seasonally variable
conditions where the source of variability in crop produc-
tion is unknown. These three types of information have
potential for use of image-based remote sensing and will
be addressed individually in the following sub-sections.

One approach to meet some of the information re-
quirements of PCM has been through the use of nonin-
vasive tractor-based sensors which control variable rate
applicators in near-real time. Several such sensors have
been developed for measuring soil organic matter (Tyler,
1994), soil nitrate levels (Adsett and Zoerb, 1991), and
soil clay content and thickness (Sudduth et al., 1995).
For real-time crop monitoring, there has been research
into the development of weed sensors to discriminate
weeds from standing crops (Thompson et al., 1990; Gu-
yer et al., 1993), a tractor-based charged couple device
(CCD) camera to discriminate plants from soil and trash
for guiding most-beneficial chemical applications (Cai
and Palmer, 1994), and a sensor for assessing crop nitro-
gen status based on an in-field reference of known nitro-
gen status (Blackmer et al., 1996). Daughtry et al. (1995)
proposed a fluorescence technique that allowed discrimi-
nation of residue from bare soil, and a commercial proto-
type that could be mounted on a trailer is currently be-
ing built. These vehicle-mounted sensors are mentioned
briefly here due to their critical role in PCM; however,
this review and further discussion will be limited to satel-
lite- or airborne-based spectral observations, and those
PCM applications that seem most promising at the pres-
ent time.

Mapping Seasonally Stable Management Units

Grain Yield Monitors
One of the more dramatic advances in acquiring spatially
variable data for PCM has been the commercial develop-
ment of combine-mounted grain yield monitors. The
data from the monitor are georeferenced using a Differ-
ential GPS (DGPS) receiver onboard the harvesting
equipment to produce yield maps. Yield maps collected
for several growing seasons can provide an integrated ex-
pression of relative productivity that is a property of the
field and unchanging from year-to-year and from crop-
to-crop (Kitchen et al, 1995). Yield maps have been
used directly for management of fertilizer application
(Schueller and Bae, 1987; Eliason et al., 1995), water ap-
plication (King et al., 1995), and planting and soil engag-
ing operations (Schueller, 1988), and have important in-
direct applications in management of weeds, insects, and
crop diseases. On the other hand, yield monitors can re-
sult in significant errors in yield estimation due to coarse
resolution, time lags in moving the grain from the crop
to the point of measurement, variations in combine
speed, and noise induced by the machine vibration and
varying terrain (Lamb et al., 1995).

The production of grain yield maps generally re-
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quires that instantaneous grain yields acquired at coarse
and/or variant resolutions with DGPS positioning be in-
terpolated to obtain average yields at a given, finer reso-
lution. Generally, geostatistical analysis is used for this
interpolation, based on kriging or the simpler inverse dis-
tance technique (Murphy et al., 1995). The drawbacks of
geostatistical analysis include the need for a large num-
ber of samples at close intervals and the assumption of
stationarity (i.e., random, not systematic, data variation)
which is often untrue for soil and crop properties (Tomer
et al., 1995). Consequently, other means for interpolating
instantaneous yield measurements to produce a map
product have been suggested. Tomer et al. (1995) used
digitized aerial infrared photographs and point-based
harvest samples with regression analysis to map crop
grain yields. Long et al. (1995) compared four methods
for deriving yield maps from combine-based yield mea-
surements—interpreting soil survey maps, interpreting
aerial photographs, and two kriging-based methods—and
found that the aerial method was significantly more accu-
rate than the other three methods for their dryland
cropped site. In any case, there is general agreement on
the need for improvements in all types of yield mapping
methodology for PCM.

Soil Fertility Properties

Farm managers have long known that soil variability in-
fluences the productive potential of agricultural lands.
Maps of soil fertility and physical attributes are being
used in PCM to determine the responsive and nonre-
sponsive parts of fields (Wolkowski and Wollenhaupt,
1995). Nielsen et al. (1995) identified several of the most
important soil fertility attributes that could be mapped
and managed for improved yield: available soil nitrogen
or some other macro or micro plant nutrient, relative po-
sition and slope of the terrain, and soil organic matter
content. Soil organic matter content has been directly re-
lated to the efficacy and rate of fertilizer applications, as
well as to crop yield and other soil variables such as
phosphorus. Pierce et al. (1995) suggested that soil phys-
ical properties or landscape (particularly in their effect
on water relations) may be even more important than
soil fertility in explaining yield variations. Bell et al.
(1995) outlined three approaches for mapping soil vari-
ability for PCM. These were based on 1) county soil sur-
veys at 1:12,000 to 1:24,000 scales, 2) geostatistical inter-
polation techniques (e.g., kriging) to map soil properties
from a grid of point samples, and 3) use of soil/landscape
models with input from either remote sensing or a digital
elevation map (DEM).

County soil surveys have two limitations for use in
PCM. First, the typical scales of greater than 1:12,000
cannot be used to delineate within-field soil variability.
Spangrud et al. (1995) suggest that scales of 1:6000 to
1:8000 are needed to guide soil specific crop manage-
ment. Second, soil attributes from county surveys are too
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imprecisely measured to adequately represent soil attri-
bute variation that can affect crop yield at the field scale
(Moore et al., 1993).

In most cases, information for soil-specific crop
management has been obtained through soil sampling in
large grids that overlay a field, at optimal grid spacings
ranging from 60 to 100 m (Franzen and Peck, 1995).
These discrete samples are converted to continuous map
format through the statistical technique of kriging, for
which the limitations were discussed in the previous sub-
section. Nielsen et al. (1995) suggested several alternatives
to conventional kriging for making soils maps for PCM,
including use of spectral and cospectral analysis, state-
space analysis, spatial covariance, and fuzzy set analysis.

Another approach for mapping soil management
units is based on soil/landscape models, generally com-
bined with DEM information. Verhagen et al. (1995) de-
scribed a deterministic, mechanistic simulation model
that combined soil physical measurements with a water
balance module and a crop growth model to distinguish
soil horizons with equivalent hydrologic properties and
map spatial and temporal variations. Another simulation
model, proposed by Roytberg and Chaplin (1995), was
used to describe the variability in soil physical condition
during tillage based on the soil resistance force, which
could be measured with tractor-based tillage transducers.
Models based solely on relief and landscape position
have been used to map spatial variability of several soil
chemical and physical properties (e.g., organic C, pH,
soil moisture, depth of A horizon, depth to free carbon-
ates in glaciated landscapes) (Wang et al., 1995; Bell et
al., 1995) and have proven useful for managing fertilizer
applications (Nolan et al., 1995). One disadvantage of
these approaches for PCM is the dependence upon
DEM data which are generally acquired from USGS
contour maps at 30 mXx30 m spatial resolution on which
elevation data are rounded to the nearest meter. Such
data are too coarse for most precision farming applica-
tions. Bell et al. (1995) note that the optimal scale for
describing landscape characteristics is unknown and
probably depends on climatic conditions; however, a 10
mX10 m grid with submeter elevation accuracy is pre-
ferred for many PCM applications. Spangrud et al.
(1995) explored the possibility of mapping field eleva-
tions with a GPS and evaluated the number and pattern
of such measurements needed for PCM.

Mapping Seasonally Variable Management Units

Though many PCM decisions can be made based on sea-
sonally stable management units defined by maps of soil
fertility or yield, there are other management decisions
that could benefit from seasonally variable information
on such conditions as weed or insects infestation, crop
stress (due to water or nitrogen), crop disease, or soil
moisture. For example, information on within-field soil

moisture variation throughout the season has been shown
to be relevant to decisions made about tillage activities
(Lindstrom et al., 1995) and nitrogen applications (Hug-
gins and Alderfer, 1995; Sadler et al., 1995).

Generally, commonly used PCM information-gather-
ing techniques (e.g., yield monitors or grid sampling)
cannot provide the quick, large-area coverage required
for mapping seasonally variable management units. Tech-
niques that have been specifically designed to obtain sea-
sonally variable information for PCM are generally based
on evaluation of aerial imagery. For example, Blackmer
et al. (1995) used aerial images obtained at a wavelength
that was particularly sensitive to canopy N levels (0.55
um) to map nitrogen-deficient areas within fields of corn.
Similar techniques have shown promise for determining
nitrogen levels of wheat (Stanhill et al., 1972; Hinzman
et al., 1986) and rice (Takebe et al., 1990). In attempts
to use geostatistics with point measurements to ana]yze
weed aggregations, Mortensen et al. (1995) cited the
benefits of using “sensing” technology to provide spatial
maps of weed infestations or guide real-time spray-no-
spray decisions. Hanson et al. (1995) identified the ad-
vantages of using aerial imagery for mapping weed infes-
tation (e.g., cost, timing, and accuracy) and demonstrated
a feasible technique for mapping wild oats in wheat
fields. These applications will be explored more fully in
the next main section.

Determining Cause of Yield Variability and
Management Strategy

Once information on yield variability is available, it must
be analyzed for making management and application de-
cisions. The challenges are to distinguish deterministic
sources of yield variability from stochastic sources
(Searcy, 1995), to develop VRT decision criteria (Kitchen
et al., 1995) in the form of decision support systems
(DSS), and to understand the relation between crop and
soil variability and management strategies (Colvin et al.,
1995). Tevis (1995) suggested several options ranging
from simply applying a threshold function to a specified
attribute layer (Tevis and Searcy, 1991) to using an ex-
pert system with several agronomic attribute layers (He
et al., 1992). Managing crop and soil conditions that vary
in both the spatial and temporal domain will require ex-
pert systems to analyze data (determine cause/effect) and
make integrated management decisions (Fixen and
Reetz, 1995).

McGrath et al. (1995) describe a packaged system
for fertility management that includes automated data
collection and analysis, an expert system for evaluating
data in combination with other information to suggest
management options, and automated applicators to carry
out the management program. This package has individ-
ual submodels for phosphorus, potassium, organic mat-
ter, and soil moisture, where static and dynamic informa-



tion is required for each. This modular approach in a
GIS environment appears to be the norm for develop-
ment of expert systems and decision support systems for
PCM (Brown and Steckler, 1995). Griffith (1995) fore-
sees a merging of many models to define specialized por-
tions of the behavior of the total production process.
Other decision aid models have been developed for man-
aging specific crops such as sorghum (SORKAM, Vand-
erlip et al., 1995), and cereals (CERES with DSSAT,
Hoogenboom et al., 1994; Booltink and Verhagen, 1996).

OPPORTUNITIES FOR IMAGE-BASED
RS IN PCM

In the previous section, the state of PCM was reviewed
and several opportunities for remote observations were
identified. Each of the next subsections relate an issue of
PCM information acquisition identified in the previous
section to the status of remote sensing technology and
theory for that issue. This is not meant to be an exhaus-
tive review of the progress of RS, but rather examples
that illustrate some of the more common approaches re-
lated to each issue. At the end of each subsection, oppor-
tunities are identified wherein RS data could be used to
identify or analyze site-soil spatial and temporal variabil-
ity for PCM.

Discussion was limited to the most commonly used
wavelength regions at spatial resolutions of 1 km or less:
reflected radiance in the visible, NIR and shortwave in-
frared (SWIR) wavelengths (0.4-2.6 um), emitted radi-
ance (3-16 um), and backscatter of synthetic aperture ra-
dar (0.9-25 em referred to as SAR). Reference is made
to some of the more commonly used concepts in RS; these
will be defined here, with an appropriate citation for fur-
ther reading. Spectral vegetation indices (VI) are a ratic
or linear combination of reflectances in the red and NIR
wavebands that is particularly sensitive to vegetation
amount (Jackson and Huete, 1991), or the amount of
photosynthetically active plant tissue in the plant canopy
(Wiegand et al., 1991); a commonly used VI is normal-
ized difference VI (NDVI) which is the difference of the
red and NIR measurements divided by their sum. Hyp-
erspectral RS is the measurement of spectral “signatures”
using data of high spectral resolution (e.g., 0.01 um)
within the range of 0.4-2.6 ym (Price, 1990). The “red
edge” in hyperspectral RS refers to the transition from
low reflectance in the visible region of the spectrum to
high NIR reflectance that is particularly sensitive to chlo-
rosis and crop stress (Demetriades-Shah et al., 1990).

Converting Point Samples to Field Maps

Images of surface reflectance, temperature, or radar back-
scatter may provide a solution to the problems identified
in converting point-based samples to continuous soil or
yield maps using geostatistics and other conventional
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methods. This will be termed “indirect” mapping be-
cause some in situ data (such as soil or yield samples) is
required to relate the spectral data to the physical pa-
rameter of interest. In many cases, the best results in
applying remote sensing techniques to identify manage-
ment units will be obtained when the crop is present.
Crop plants integrate the effects of the climatic environ-
ment, stress (disease, nutrient, and water), and soil prop-
erties. These effects are often expressed in the crop can-
opy achieved (Wiegand and Richardson, 1984). Two
techniques show some promise here: image classification
(supervised or unsupervised), and cokriging.

Conventional image classification, whether super-
vised or unsupervised, utilizes a statistical routine (e.g.,
maximum likelihood) to sort an image into discrete spec-
tral categories. In supervised image classification, on-site
measurements of soil or crop conditions are used to
“train” the classifier and the product is a map of the de-
sired surface parameter. Unsupervised image classifica-
tion circumvents the need for training sets by using the
image spectral data to define “clusters” that are used to
produce a map of spectrally similar classes. The spectral
data from sample sites can be extracted and then be re-
lated to measured variables at the same sites (yield, avail-
able water, salinity, soil nitrogen, etc.) to define the un-
supervised class map in the variable of interest (Wiegand
et al., 1996). Image classification techniques run quickly
and easily on many personal computers, and are under-
utilized in PCM. Furthermore, recent advances in super-
vised image classification have decreased the large
ground data sets required for accurate map-making. Al-
ternative classifiers, such as artificial neural network or
genetic algorithms, require fewer samples than conven-
tional classifiers, though care must still be taken in se-
lecting the composition of the samples (Foody et al.,
1995; Clark and Cafias, 1995). There have been sugges-
tions that a fuzzy logic classifier would work best for ag-
ricultural fields of high heterogeneity (Blonda et al., 1991).

The limitations of conventional kriging techniques
for producing maps of crop and soil conditions from on-
site samples have been addressed in the previous section.
The use of “cokriging,” which links multiple measure-
ments through regression analysis (termed coregionaliza-
tion), has been suggested as an alternative. Atkinson et
al. (1992) found that cokriging with on-site measure-
ments of reflectance and vegetation cover resulted in
maps of cover with three times the precision achievable
with univariate kriging for a given amount of effort. The
use of remotely sensed images with statistical techniques
has been suggested to improve map accuracy, reduce the
number of soil samples needed, and circumvent the need
for annual grid sampling of soil nitrogen levels (Ferguson
et al., 1995). Fuzzy set analysis within a GIS environ-
ment is particularly conducive to incorporation of aerial
images (McBratney and Whelan, 1995).
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Thus, we suggest the following:!

1. Measurements of soil and crop properties at sam-
ple sites combined with multispectral imagery
could produce accurate, timely maps of soil and
crop characteristics for defining precision manage-
ment units.

Mapping Crop Yield
Remote sensing has been used operationally for prehar-
vest forecasting of yield. In the simplest approach, final
grain yield has been correlated with a single observation
of the normalized difference vegetation index (NDVI) or
an NDVI time integral at specific times during the sea-
son (Tucker et al., 1980; Rasmussen, 1992; Yang and An-
derson, 1996). In other applications, NDVI has been
used to determine yields (e.g, corn, soybean, or grain) by
computing the areas under the predicted growth profile
for some selected time periods (Boatwright et al., 1988),
monitoring the postanthesis senescence rate (Idso et al.,
1980; Potdar, 1990; 1993), and measuring the length of
the grain-filling period (Quarmby et al., 1993). Most
studies suggest that NDVI can be effective for providing
information on germination and vegetative stages, but
this information must be combined with input from an
agrometeorological model to accurately determine crop
yields (Patel et al., 1991; Rudorff and Batista, 1991).

Integrated with models, RS data are generally used
to estimate model inputs related to light interception,
such as leaf area index (LAI) or percent vegetation cover.
The rate of crop growth is then calculated from meteoro-
logical data based on an efficiency factor for conversion
of radiant energy to biomass (Wiegand et al., 1986a).
This information is used to predict yield as a function
of biomass growth rates, like those listed in the previous
paragraph. In another approach, remotely sensed inputs
of instantaneous LAI or evaporation rates are used for
within-season model calibration to reinitialize or repa-
rameterize the model and improve yield prediction
(Maas, 1988; Moran et al., 1995; Bouman, 1992). The
latter approach has the advantage of requiring fewer re-
motely sensed inputs since the calibrated model is used
to estimate crop growth when remotely sensed data are
not available.

Thus, we suggest the following:

2a. Multispectral images obtained late in the crop
growing season could be used to map crop yields
with approaches as simple as regression.

2b. Remote sensing information could be combined
with crop growth or agrometeorological models
to predict final yield.

'The suggestions listed in this section are numbered for easy
cross-reference with the numbers in Figures 1-3 and Table 2.

Mapping Soil Variability

Mapping soils of naturally vegetated areas with RS is of-
ten based on the association of vegetation type with soil
(Korolyuk and Shcherbenko, 1994); this is not feasible
for agricultural sites where crops simply increase the
complexity of image interpretation. A more appropriate
method for agricultural applications would be to extract
information about soil surface conditions directly from
radiometric measurements of bare soils. Surface reflec-
tance information has been related directly to variability
in loess thickness (Milfred and Kiefer, 1976), soil organic
matter (Robert, 1993; Zheng and Schreier, 1988; Baum-
gardner et al., 1970), soil calcium carbonate content (Le-
one et al.,, 1995), soil nutrients (particularly those associ-
ated with soil texture and drainage) (Thompson and
Robert, 1995), iron oxide content (Coleman and Mont-
gomery, 1987), and soil texture classes (with similar re-
sponses to water and fertilizer) (King et al., 1995). Soil
thermal information has been linked with variations in
soil moisture content (Idso et al., 1975) and soil compac-
tion (Burrough et al., 1985).

Despite the relations among soil reflectance and soil
properties, remotely sensed images are not currently be-
ing used to map soil characteristics on a routine basis
(with the exception of high and medium altitude aerial
photographs that serve as base maps in county level soil
surveys). This is because the reflectance characteristics
of the desired soil properties (e.g., organic matter, tex-
ture, iron content) are often confused by variability in
soil moisture content, surface roughness, climate factors,
solar zenith angle, and view angle. This is particularly
true for mapping agricultural soils with varying cultiva-
tion practices. In fact, Leek and Solberg (1995) showed
that images of surface reflectance acquired during times
of greatest plowing activity could be used to map tillage
and assist in erosion control.

Kimes et al. (1993) proposed to overcome this con-
fusion by using an expert system to analyze hyperspectral
images based on spectral signatures of some soil proper-
ties. It worked well for broad classes (e.g., fine versus
coarse texture) and was most successful in distinguishing
high and low organic matter content soils. In another ap-
proach, Muller and James (1994) suggested that the un-
certainty in mapping soil particle size caused by differ-
ences in soil roughness, moisture, and vegetation cover
could be minimized by using a set of multitemporal im-
ages for soil classification. Salisbury and D’Aria (1992)
reported that thermal infrared band ratios from the up-
coming EOS ASTER sensor (range 8-14 ym, resolution
90 m) could be used to discriminate such soil properties
as particle size, soil moisture, soil organic content, and
the presence of abundant minerals other than quartz.

Remote sensing may also prove useful for mapping
more transitory conditions, such as salt-affected soils.
There is evidence that salt-affected soils in general show



relatively higher spectral response in the visible and
near-IR regions than normal cultivated soils, and strongly
saline-sodic soils were found to have higher spectral re-
sponse than moderately saline-sodic soils (Rao et al,
1995). Verma et al. (1994) found that better results (par-
ticularly for discrimination of the similar reflectance
properties of salt-affected soils and normal sandy soils)
could be obtained by combining reflectance and temper-
ature information. Further, Sreenivas et al. (1995) re-
ported that a combination of optical and SAR data
showed potential for detecting saline areas and separat-
ing saline soils from sodic soils, particularly under moist
soil conditions. Wiegand et al. (1996) have used soil and
plant samples, videography or SPOT HRV spectral ob-
servations, and unsupervised classification to map soil sa-
linity and yield at salt-affected cropped fields.

For both crop and soil mapping, remotely sensed
images should also be considered for revision of maps of
“seasonally-stable” management units. By comparing
such maps acquired at optimum times within the season
(when soils are bare or when crops cover or phenology
is optimum), it may be possible to revise management
units midseason in response to unexpected changes. The
revision process could be as simple as displaying the re-
mote sensing data as a backdrop to a vector map of man-
agement units within a GIS and visually assessing differ-
ences (Chagarlamudi and Plunkett, 1993) or could be
based on automated technology for change detection
(Hallum, 1993).

Thus, we suggest the following:

3a. Multispectral images obtained when soils are
bare could be used to map soil types relevant to
PCM with approaches based on models and/or
on analysis of single or multiple image acquisi-
tions.

3b. Maps of spectral variability (obtained under con-
ditions of either bare soil or full crop cover)
may prove useful for revision of maps of manage-
ment units

Monitoring Seasonally Variable Soil and Crop
Characteristics

In the previous main section, we identified several sea-
sonally variable soil and crop conditions for which infor-
mation on variability would be useful for PCM; these in-
cluded soil moisture content, crop phenology, crop
growth, crop evaporation rate, crop nutrient deﬁciency,
crop disease, weed infestation, and insect infestation. RS
techniques for monitoring these eight parameters will be
discussed in the next paragraphs.

Soil Moisture Content

Attempts have been made to map soil moisture content
of agricultural fields based on a simple linear correlation
with the backscatter of the SAR signal in long wave-
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lengths (e.g., C-band at 5.7 cm or L-band at 21 cm). This
direct relation can be strong for bare soil conditions, but
there is considerable scatter when fields of variable crop
biomass are included in the regression (Benallegue et al.,
1994). Thus, most recent works in mapping within-field
soil moisture conditions are based on the use of dual-
frequency SAR where the combination of long and short
(e.g., Ku-band at 2 cm or X-band at 3 ¢cm) wavelengths
is used to determine the vegetation-induced attenuation
of the long-wavelength signal to improve estimates of soil
moisture (Taconet et al., 1994; Prevot et al., 1993; Pa-
loscia et al., 1993; Moran et al., 1997a). There are other
issues that must be considered in the use of SAR for
mapping soil moisture content for PCM applications.
Studies have found that SAR measurement depth is only
0.1-0.2 times the wavelength, and it decreases with
moisture content; this translates to about 10 ¢m mea-
surement depth for the L-band at moderate moisture
content (Engman and Chauhan, 1995). Furthermore, the
SAR signal is sensitive not only to soil moisture but also
to surface roughness (like that associated with differen-
tially tilled agricultural soils) and topography. Engman
and Chauhan (1995) suggested that the best application
of existing, unifrequency SAR sensors may be for moni-
toring the temporal change of soil moisture to minimize
the influence of variability in roughness, vegetation and
topography. Others have suggested that SAR radiative
transfer models could be used, with ancillary data pro-
vided by remote sensing of non-SAR wavelengths or
other sources, to reduce the surface-induced “noise” in
the SAR signal and improve soil moisture estimates
(Moran et al., 1997b; Wingeron et al., 1995).

Crop Phenology

Knowledge of the stage of the crop development is useful
for time-specific crop management (TSCM), such as min-
imizing or maximizing crop stress during crucial periods
(e.g., grain filling in wheat, anthesis of corn, or sugar de-
velopment in cantaloupe). For example, the vegetative, re-
productive and senescing phases of wheat crops have been
discriminated based on seasonal shifts in the red edge
(Railyan and Korobov, 1993), bidirectional reflectance
measurements (Zipoli and Grifoni, 1994), measurements
of reflected polarized light (Ghosh et al., 1993), and tem-
poral monitoring of NDVI (Boissard et al., 1993).

Crop Growth

The most common approach in remote sensing for mea-
suring or monitoring crop growth is the empirical corre-
lation of VI with such crop variables as LAI, percent veg-
etation cover, vegetation phytomass and fraction of
absorbed photosynthetically active radiance (fyear) (e.g.,
Pinter, 1993). The basic theory of this approach is well
understood (Jackson and Huete, 1991) and the field vali-
dation studies for a variety of crops, locations, and mete-
orological conditions are endless. Recent improvements
to this approach include developing VIs are that insensi-
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tive to soil/atmosphere/sensor noise (e.g., Huete, 1988;
Malthus et al., 1993) and developing empirical relations
that are robust for application to a variety of crops, loca-
tions, and conditions (Richardson et al., 1992; 1993; Wie-
gand et al., 1992). Because of the inherent advantages of
SAR data acquisition (cloud penetration and night acqui-
sition), there have been some suggestions that SAR back-
scatter in short wavelengths could be used to monitor
crop cover and relative growth (Bouman and Hoekman,
1993; Moran et al., 1997a). Other approaches are based
on the premise that remote sensing alone is not sufficient
for producing accurate vegetation information. Such ap-
proaches are generally based on crop growth models or
canopy radiative transfer models (RTM). An example of
the former was presented by Clevers et al. (1994) using
optical reflectance measurements to calibrate the
SUCROS crop growth model and improve estimates of
crop yield. An example of the latter was presented by
Kimes et al. (1991) in the development of a knowledge-
based system (VEG) to infer reflectances of a vegetation
target, or inversely, to derive vegetation characteristics
from multiband or multiview reflectance measurements.
The use of canopy RTMs has been particularly successful
with off-nadir reflectance measurements since they can
use the multidirectional measurements as an additional
source of information about the canopy structure (Qi et
al., 1995a). The conclusion of a review by Myneni et al.
(1995) was a good summation of the state-of-the-art in
remote sensing of vegetation:

In spite of obvious limitations, spectral vegetation in-
dices are still preferable in the analysis of large spatial
data sets. The promise of remote sensing, however,
lies in those methods that utilize physical models and
advances in computer science and technology.

Crop Evapotranspiration Rate

Crop stress, due to crop disease, water deﬁciency, some
insect infestations, and other problems, is often mani-
fested by a decrease in the transpiration rate of the crop.
As such, much work has been conductéd to use remote
sensing for monitoring crop evapotranspiration rates.
One of the more promising approaches for operational
application is the use of remotely sensed crop coeffi-
cients (the ratio of actual crop evapotranspiration and
that of a reference crop) for estimation of actual, site-
specific crop evapotranspiration rate from readily avail-
able meteorological information (e.g., Bausch, 1993).
This approach requires only a measure of spectral vege-
tation index (e.g., NDVI) and is simply an improvement
of an approach already accepted and in use by farmers
to manage crops, where such improvements include in-
creases in accuracy of the evaporation estimates and,
with use of images, the ability to map within-field and
between-field variations. Another approach that has ob-
tained commercial success is the crop water stress index
(CWSI), which provides a measure of crop stress from

0 to 1 based on the difference between surface and air
temperature with reference to the vapor pressure deficit
and a crop-specific baseline (Jackson et al., 1981). The
commercial applicability of CWSI is evidenced by the
commercial production of a handheld instrument de-
signed to measure CWSI, several commercial imaging
companies that are providing CWSI to farmers, and the
multitude of examples of application of this theory with
airborne and satellite-based thermal sensors combined
with ground-based meteorological information [see re-
views by Moran and Jackson (1991) and Norman et al.
(1995)]. Other approaches are being explored to use
near-linear relations between spectral vegetation indices
and canopy stomatal conductance and photosynthesis
with respect to photosynthetically active radiation (PAR)
(Sellers, 1987; Verma et al., 1993). The location of the
red edge determined with hyperspectral measurements
also shows promise for early detection of water stress
(Shibayama et al., 1993).

Crop Nutrient Deficiency

Plant nitrogen content and canopy nitrogen deficits have
been related to reflectance measurements in the green
(0.545 um), red (0.66 um), and NIR (0.80 um) spectrum

(Fernandez et al., 1994; Buschmann and Nagel, 1993).

However, most such relations are sensitive to variations

in soil reflectance, and the best bandwidths are narrow

and unavailable with satellite-based wide-band sensors.
Blackmer et al. (1995) proposed the images of canopy

-reflectance centered at 0.55 um acquired late in the

growing season could be used to detect portions of the
field that were nitrogen deficient. Such information
could be obtained earlier in the season by ratioing crop
reflectance spectra with a reference spectrum from the
same crop to define absorption maxima and minima that
were related to nitrogen levels (Chappelle et al., 1992).

Crop Disease

Remote sensing has some potential for detecting and
identifying crop diseases. Toler et al. (1981) used false
color IR photography to detect Phymatotrichum root rot
of cotton and wheat stem rust. In fungal and mildew in-
fected leaves, changes in remotely sensed reflectance have
been detected before symptoms were visible to the human
eye (Malthus and Madeira, 1993; Lorenzen and Jensen,
1989). Though wide visible and near-infrared bands may
be helpful for discriminating healthy and diseased crops

(due to changes in foliage density, leaf area, leaf angles,

or canopy structure), the best results for identifying dis-
eases were obtained with hyperspectral information in
the visible and near-infrared spectrum. Discrimination of
diseases may be possible with knowledge of the physio-
logical effect of the disease on leaf and canopy elements.
For example, necrotic diseases can cause a darkening of
leaves in the visible spectrum and a cell collapse that

would decrease near-infrared reflectance. Chlorosis in-

ducing diseases (mildews and some virus) cause marked



changes in the visible reflectance (similar to N defi-
ciency) and other diseases may be detected by their ef-
fects on canopy geometry (wilting or decreases in LAI).

Weed Infestation

Herbicides are generally applied both prior to planting
and post-emergence. For precision management of pre-
plant applications, the information requirement is simply
determination of presence or absence of plants, and the
remote sensors should be comparably simple, such as the
tractor-based sensors previously described in the previ-
ous main section or interpretation of digital images based
on VI or supervised classification (e.g., Richardson et al.,
1985). In fact, since perennial weeds tend to remain in
the same location each year, there is even the possibility
of using the previous year’s weed map for preplant con-
trol decisions (Brown and Steckler, 1995). Management
of postemergence herbicide applications poses more dif-
ficulty because it requires discrimination between weeds
and crops. This is generally accomplished based on the
differences in the visible/NIR spectral signatures of crops
and specific weeds (Brown et al., 1994) or by acquiring
images at specific times during the season when weed
coloring is particularly distinctive (i.e., during flowering).
An example of an integrated system for management of
weeds with remote sensing input was presented by
Brown and Steckler (1995). Their system combined im-
age-derived weed maps with a GIS-based decision model
to determine optimum herbicide mix and application
rates for no-till corn and resulted in reductions of herbi-
cide use by more than 40%.

Insect Infestation
Few studies have been reported on the use of remote
sensing for directly assessing insect infestation. Indi-
rectly, insect damage to plants has been detected
through remote sensing of insect habitat (Hugh-Jones et
al., 1992), growth and yield of plants (Vogelmann and
Rock, 1989), or changes in plant chemistry. Pefiuelas et
al. (1995) found that increasing infestations of mites in
apple trees caused a decrease in the leaf chlorophyll con-
centration and an increase in the carotenoid/chlorophyll
a ratio. These chemical changes were detected with re-
flectance measurements made in narrow bandwidths in
the visible and NIR spectrum.

, There is considerable evidence that multispectral
images can be used for identifying and monitoring the
following seasonally variable soil and crop conditions:

4a. Soil moisture content,

4b. Crop phenologic stage,

4c. Crop biomass and yield production,
4d. Crop evapotranspiration rate,

4e. Crop nutrient deficiencies,

4f. Crop disecase,

4g. Weed infestation, and

4h. Insect infestation.
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Determining the Cause of the Variability in

Crop Production

Remote sensing has a variety of roles in determining the
cause of spatial and temporal crop and soil variability.
The most obvious role, which has been advanced
throughout this review, is the use of remote sensing in-
formation to improve the capacity and accuracy of DSS
and agronomic models by providing accurate input infor-
mation or as a means of model calibration or validation.
Another role is the use of hyperspectral imagers for di-
rect crop diagnosis. Issues related to these two indepen-
dent functions of remote sensing in PCM will be the
topic of this subsection.

The link between remote sensing and simulation
modeling has been illustrated through examples of the
use of remote sensing for parameterization of models
(Wiegand et al., 1986b), within-season model calibration
(Maas, 1993), and model validation (Fischer, 1994). An-
other option, which is receiving less attention, was articu-
lated by Bouma (1995). His option is based on the prem-
ise that the most useful models will be those in which
the degree of complexity is in equilibrium with the avail-
able data. Bouma laments the examples of complicated
deterministic models being used without adequate basic
data, yielding irrelevant results. In terms of the synergy
between remote sensing and models, this premise could
be interpreted in two ways. Either emphasis must be put
on the relation of remote sensing measurements with
common model inputs or models must be refined to re-
late existing remote sensing information to the unavail-
able data needed for the model. The latter option holds
the most promise.

In this review we have cited examples where hyper-
spectral data in the visible and NIR wavelengths have
been used successfully for discrimination of crop stress
caused by N deficiency, crop disease, water stress, chlo-
rosis, and more. Carter (1994) reported that narrow
wavebands derived from hyperspectral data could be
used to discriminate the cause of plant stress in six plant
species due to eight stress agents: competition, herbicide,
pathogen, ozone, mychorrhizae, island, senescence, and
dehydration. At this time, there are no hyperspectral in-
struments available on satellite platforms and few avail-
able on aircraft; furthermore, processing, analysis, and
interpretation of hyperspectral images is time-consuming
for both the computer and computer-user. The vision of
remote sensing for analysis of yield variability in PCM
may include the use of airborne sensors with wide-bands
to map crop stress variability and the subsequent deploy-
ment of hyperspectral sensors for determination of the
cause of the stress for making application management
decisions.

Thus, we suggest the following:

5a. Remote observations could provide accurate input
information for agricultural DSS.
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5b. Remote sensing information could be combined
with agro-meteorologic models to determine the
cause of soil and crop variability.

Sc. Hyperspectral sensors could be used to determine
the cause of soil and crop variability.

Mapping Spatially Distributed Information on
Meteorological/Climate Conditions

In nearly every application of PCM and in every agro-
meteorological model, knowledge of spatial variations in
meteorological conditions is crucial. Yet, most applica-
tions are based on output from a single meteorological
station that may be many kilometers distant from the
field, and the instruments are generally located over a
grassy plot that is not indicative of field conditions. There
are numerous examples of the use of satellite spectral
images for estimation of insolation (e.g., Pinker and Ew-
ing, 1985), PAR (e.g., Frouin and Pinker, 1995), net long-
wave radiation (Ellingson, 1995), rainfall (Petty, 1995),
and other meteorological variables. Further work has fo-
cused on combining remote sensing with mesoscale me-
teorological models to make regional estimates of such
variables as air temperature, wind speed, and vapor pres-
sure deficit (Toth et al., 1996). These studies are possible
because of geostationary satellite sensors that can pro-
vide coarse-resolution multispectral data with twice/day
coverage and near-instantaneous turnaround times. These
sensor characteristics are suitable for PCM applications.
Thus, we suggest the following:

6. Multispectral images of coarse spatial resolution
and fine temporal resolution should be used to
produce local or regional maps of meteorological
parameters such as insolation, PAR, rainfall, and
others.

Producing Fine-Resolution Digital Elevation Data
Today, it is possible to generate DEMs from stereopairs
of aerial or satellite images using software available for
personal computers (Gagnon et al., 1990). Automated
stereo correlation procedures are available to derive
DEM information from stereo images without the need
of the user to view the images and/or conduct measure-
ments (Chagarlamudi and Plunkett, 1993). Thus, we sug-
gest the following:

7. DEMs could be produced from stereopairs of ae-
rial or satellite images with the spatial resolution
and accuracy required for PCM applications.

Addressing Time-Critical Crop Management
(TCCM) Applications

In a previous subsection (Monitoring Seasonally Variable
Soil and Crop Characteristics) we recognized that crop
damage can be caused by many agents, such as insects,

disease, insufficient or excess water and nutrients, me-
chanical, and chemical damage. In many cases, crop
damage is manifested in changes in above-ground fo-
liage, such as tone or color of leaves, leaf condition (wilt-
ing or distortion), leaf area (including defoliation), and
leaf or stem orientation (such as lodging). Airborne im-
aging sensors can record these effects and provide an ac-
curate, timely means of assessing the extent of the dam-
age and identifying management units for time-critical
material applications. This approach has been used ex-
tensively and successfully with aerial photographs (Toler
et al., 1981; Blakeman, 1990) for determining the spread
of crop disease and insect infestation, and the efficacy
of applications of herbicide, defoliant, and water. Nutter
(1989) found that he could track disease gradients in
peanuts by quantifying leaflet defoliation with measure-
ments of NIR crop canopy reflectance. Currently avail-
able airborne sensors have the capacity to provide digital
images within a few hours of acquisition to allow proper
management of these time-critical problems.
Thus, we suggest the following:

8. For TCCM, multispectral images from aircraft-sen-
sors could be used as a quick means of assessing
the extent of the damage and identifying manage-
ment units for damage control.

TECHNICAL LIMITATIONS OF
REMOTE SENSING

Aircraft and Satellite Image Processing

Most of the remote sensing applications recommended
for PCM in this review are “quantitative”; that is, they
are based on measurements of surface physical proper-
ties such as reflectance, temperature, or SAR backscat-
ter, not on an uncalibrated, uncorrected digital number
(DN). Thus, a significant barrier to implementation of
most remote sensing techniques is the conversion of digi-
tal images to information on surface properties that is
temporally comparable and geometrically correct. This
conversion generally involves instrument calibration, at-
mospheric correction, normalization for off-nadir viewing
effects, cloud screening (for satellite-base images), and
such procedures as vignetting correction, line-shift cor-
rection, band-to-band registration, and frame mosaicing
(for video- or digital-camera multispectral images). For
use in a GIS, the images must subsequently be regis-
tered to map coordinates (e.g., UTM). For most applica-
tions of RS in PCM, these procedures must be auto-
mated for quick turnaround, yet accurate for minimizing
management-related risk. Some promising options for
processing images for PCM applications are discussed in
this section.

Instrument Calibration
Instrument calibration is no longer a serious impediment
to the use of satellite-based sensors because most or-



biting sensors have on-board calibration instrumentation
and some are regularly calibrated with in-flight proce-
dures (e.g., Slater et al., 1987). This is not the case for
video and digital cameras aboard small aircraft. For such
sensors, calibration has been attempted in preflight, labo-
ratory settings (Crowther, 1992), but this approach is of-
ten not appropriate since the conditions aboard the air-
craft differ significantly from those in the laboratory and
some sensors cannot be calibrated due to automatic gain
compensation. On the other hand, there are viable op-
tions for in-flight calibration based on intercalibration of
side-by-side mounted uncalibrated video systems and cal-
ibrated radiometers (Neale et al., 1995) and (for re-
flected data) conversion of digital number to apparent
reflectance based on side-by-side mounted up-looking
and down-looking sensors (Piekotowski et al., 1996). The
latter approach has additional merit since it provides a
partial atmospheric correction by accounting for within-
flight variations in insolation; however, the output is ap-
parent reflectance, not surface reflectance. Commercially
available thermal video systems generally provide a digi-
tal number to apparent temperature (i.e., at-sensor tem-
perature without atmospheric correction) conversion for
each frame.

Atmospheric Correction

Great strides have been made in simplification and speed
of atmospheric correction of optical images through de-
velopment and refinement of radiative transfer models
(RTM). For most satellite-based sensors, existing RTMs
have been used to develop simple lookup tables (LUT)
that compute relations between at-satellite radiance and
surface reflectance and/or temperature based on a mini-
mum number of atmospheric inputs (Rahman and De-
dieu, 1994) or on input from the image itself (Teillet,
1992; Gonima, 1993). With these tools, digital images
from calibrated satellite-based sensors can be converted
quickly to images of surface reflectance or temperature
with considerable accuracy. Again, these tools are not
suitable for aircraft-based sensors that are flown at vari-
able altitudes within the atmosphere, that have spectral
response functions different from those of orbiting sen-
sors, and that are generally not calibrated. Thus, alterna-
tive approaches that circumvent the need for RTM have
been used for airborne sensors in the optical region.
Some based on simple linear regression with such
ground-based targets as pseudo-invariant objects (Muller
and James, 1994), reflectance tarps of a constant reflec-
tance over a spectral region (Moran et al., 1996a), and
painted plywood (Richardson et al., 1993). Such methods
have two disadvantages: 1) They require that a pseudoin-
variant object be available within the image or that a ref-
erence target be deployed during flight, and 2) they do
not account for spatially or temporally variable atmo-
spheric conditions (such as variable cirrus clouds) during
flight. Relative correction procedures have been pro-
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posed based on image processing techniques such as his-
togram equalization and dark object subtraction (Chavez,
1988). Though these methods are useful for temporal
comparison of images, they do not provide absolute re-
flectance and temperature information, and, in some
cases, the result is greater error than no correction at all
(Moran et al., 1992). In-flight SAR calibrations are gen-
erally based on corner reflectors deployed on the ground
at strategic locations during the flight.

Atmospheric correction of single-band thermal im-
ages is generally accomplished through the use of RTMs
based on estimates or measurements of atmospheric wa-
ter vapor (Kaufman, 1989). However, there is repeated
evidence that, for clear sky conditions (high visibility and
low water vapor content), the correction of thermal im-
ages over land surfaces may not be necessary because
the atmospheric absorption is approximately compen-
sated by the path radiance emitted by the atmospheric
constituents (Sugita and Brutsaert, 1993; Bartolucci et
al., 1988). Another concern in the use of thermal data is
the conversion from radiometric temperature (measured
by the sensor) to kinetic temperature (true surface tem-
perature corrected for emissivity). A recent issue of Re-
mote Sensing Environment (Vol. 42, 1992) was dedicated
to measurement and separation of kinetic temperature
and spectral emissivity. An approach that has promise for
operational mapping of thermal emissivity, and thus re-
trieval of kinetic temperature from radiometric tempera-
ture, was based on the relation between emissivity and
NDVI (Van de Griend and Owe, 1993).

Normalization of Off-Nadir Effects on Optical Data

Off-nadir viewing, due to either pointable sensors (e.g.,
SPOT HRYV) or the wide-angle field-of-view of the sen-
sors (e.g., NOAA AVHRR or airborne video systems) has
two major effects on optical images: 1) the influence of
the atmosphere is increased due to a longer path from
sensor to ground (relative to a nadir view at the same
altitude) and 2) the measured surface reflectance or tem-
perature varies with the nonlambertian characteristics of
the surface. The first effect can be adequately corrected
with appropriate atmospheric correction procedures, as
discussed by Martonchik (1994). The second effect re-
quires some knowledge of surface conditions for normal-
ization, where normalization consists of converted off-
nadir measurements to those that would be measured
with a nadir-looking sensor or to a hemispherical spectral
albedo. Attempts to normalize bidirectional effects
through band ratioing, such as NDVI, have been unsuc-
cessful since the bidirectional response varies in the visi-
ble and NIR spectrum (Qi et al., 1993); in fact, band
ratioing could worsen the problem (Cihlar et al., 1994).
In a simple approach, Moran et al. (1990) proposed that
the Dbidirectional reflectance distribution function
(BRDF) along a single azimuthal plane was similar for
several rough agricultural surfaces and a correction based
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on a single algorithm could be applied. For greater accu-
racy, canopy BRDF models have been proposed based
on either information about the canopy geometry or
measurements of multiple off-nadir views from which in-
formation about the canopy can be derived. The use of
BRDF models to normalize off-nadir viewing effects has
been successfully applied with either multiple acquisi-
tions from pointable sensors or with the overlapping
multidirectional views provided by airborne video or dig-
ital cameras (Qi et al., 1995b; Pickup et al., 1995) and
represents a viable option for correction of surface-re-
lated bidirectional effects on reflectance measurements.
Another approach, as mentioned earlier, is to circumvent
the normalization process and, instead, use the additional
information provided by bidirectional measurements to
compute biophysical parameters such as LAI and per-
cent vegetation cover (Qi et al., 1995a; Myneni et al,
1995). This approach has great promise for application
with pointable sensors or overlapping video frames.
There is also evidence that view angle has a significant
effect on temperature measurements; Lagouarde and
Kerr (1993) stressed the need for directional thermal in-
frared models.

Cloud Screening

One characteristic of SAR data that makes it desirable
for agricultural applications is the ability to penetrate
clouds and obtain imagery regardless of cloudy condi-
tions. Unfortunately, optical wavelengths are absorbed or
reflected by clouds, resulting in either degraded images
that must be screened for clouds or no image at all. Gen-
erally, cloud screening is accomplished using statistical
methods with histogram analysis (Phulpin et al., 1983),
threshold tests applied to different combinations of chan-
nels (Saunders and Kreibel, 1988), or pattern recognition
based on spatial (Ebert, 1987) or temporal (Gutman et
al., 1987) analysis. The most successful methods are gen-
erally based on the combined analysis of both visible and
thermal infrared data (Derrien et al., 1993; Gutman et
al., 1994), though adequate screening can be obtained
based on either wavelength region separately (Franca
and Cracknell, 1995). The other concern related to
clouds is the ability to obtain an image at a given time
of year or a time series of high-quality images. Marshall
et al. (1994) concluded that for study of relatively stable
features, the 16-day repeat cycle of Landsat would suf-
fice; but for monitoring short-term events or obtaining
time-critical acquisitions, it may be necessary to combine
images obtained with both optical and SAR sensors.
They found that frequency of imagery “with little cloud
cover” within the European Arctic sector was between
7 and 54% of the total possible acquisitions, depending
upon region.

Processing Images from Airborne Video and

Digital Cameras

There is no question about the usefulness of airborne
cameras for agricultural applications. The desirable char-

acteristics include low cost, real-time imagery, flexible
spectral bands and band widths, and data redundancy
due to overlapping frames (Mausel et al., 1992). The dis-
advantages are also well documented, including line-
shifting in video frames, vignetting effects, bidirectional
reflectance variations due to wide fields-of-view, band-to-
band misregistration, and difficulties in frame registration
and mosaicing. However, as the popularity of such sys-
tems increases, advancements in automated image pro-
cessing have been proposed. Vignetting effects are gen-
erally corrected with a sensor-specific filtering function
(Neale et al., 1995). There are several procedures that
show promise for automated correction of video line-
shifting and band-to-band registration (Pickup et al,
1995; Mitchell et al., 1995) and correction of bidirec-
tional effects based on the overlap of video frames
(Pickup et al., 1995; Qi et al., 1995b). However, there
has been little progress in automated frame registration
and mosaicing to produce seamless regional images. Un-
like images obtained with satellite-based sensors for
which a single geometric registration procedure can be
used for a large region, aircraft-based systems generally
result in a multitude of frames that must be registered
separately and mosaiced for local or regional coverage.
Current manual procedures produce high-accuracy regis-
tration but are based on time-consuming, tedious regis-
tration of ground control points with individual frames;
automated mosaicing can be achieved with in-flight tag-
ging of individual frames with information on yaw, pitch,
and roll of the aircraft and GPS location coordinates, but
the accuracy of the mosaiced images is on the order of
20 pixels. Methods for obtaining timely, geometrically ac-
curate maps from video or digital frames obtained with
airborne cameras are not yet available. This is a serious
limitation for operational use of such imagery for PCM
applications where the 20 pixel accuracy provided by au-
tomated methods is not sufficient.

Instrument Design

One of the greatest obstacles to incorporation of RS
images in PCM will be the inherent limitations of cur-
rently available sensors. Satellite-based sensors have the
advantages of good geometric and radiometric integrity;
the disadvantages include fixed spectral bands that may
be inappropriate for a given application, spatial resolu-
tions too coarse for within-field analysis, inadequate re-
peat coverage for intensive agricultural management, and
long time periods between image acquisition and deliv-
ery to user. A variety of image processing techniques
have been proposed to remedy these shortcomings, in-
cluding techniques to merge images of differing spatial
and spectral resolutions to improve the spatial resolution
of the coarser image (Moran, 1989), attempts to “unmix”
coarse spectral- and spatial-resolution reflectance and
thermal data (Caselles et al., 1992), proposals to use



modeling to supplement intermittent image acquisitions
(Moran et al., 1995), and attempts to combine images of
differing sensors and different spectral and spatial resolu-
tions to increase the number of acquisitions during a
specific time period (Moran, 1994). Delivery times for
most satellite-based sensors has recently improved, and
images are now available (at a significant additional cost
to the buyer) within 48 h of acquisition. Though sensors
aboard airplanes, helicopters, and zeppelins will be able
to meet the requirements for fine spatial resolution, flex-
ible and narrow spectral bands, frequent repeat cover-
age, and quick turnaround times, the previously dis-
cussed difficulties in calibration and geometric correction
may preclude such data from many applications. The
new digital cameras will allow larger area coverage in
each frame (up to 1024X1024 pixels) and there is hope
that the upcoming launch of commercial satellites (de-
scribed in the next section) will meet some of the strin-
gent time, space, and spectral needs of PCM applications
[see review by Fritz (1996)].

SYNTHESIS

In this section, we propose an approach for evaluation of
the usefulness of current and proposed aircraft- and sat-
ellite-based sensors for PCM applications (tractor-based
sensors are not considered here). This approach is based
on the concept that each PCM application has require-
ments for management unit size, turnaround time from
image acquisition to map product, image coverage and
repeat acquisitions, and optimal spectral regions. Corre-
spondingly, each sensor has defined pixel resolution, im-
age delivery and processing times, repeat cycle, and
spectral wavelengths. These application requirements
and sensor attributes need only be matched to see if a
certain application can be implemented with a given sen-
sor. We applied this concept to the applications identi-
fied in two sections before and some current aircraft-
and satellite-based sensors.

Synthesis Approach

The first step was to evaluate the attributes of current
aircraft- and satellite-based sensors (Table 1) relative to
requirements for PCM applications listed two sections
before. Such evaluation was based on the following crite-
ria developed to determine appropriate pixel resolution,
image turnaround time, and sensor repeat cycle.

Pixel Resolution

The relation between the size of the management units
for each application and the appropriate sensor pixel res-
olution must account for sensor optics, atmospheric in-
terference, image registration accuracy, and detector sig-
nal/noise ratio. That is, the sensor pixel resolution (PR,
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m) needed for the PCM management unit (MU, m) is a
function of the sensor signal-to-noise ratio (fy) and the
geometric registration accuracy (fps), where

PR=MU/(fyx+fxa)s (1)

where the functions fsn and fgs are factors that must be
considered when determining the PR that can best dis-
cern information about the MU (note the dimension of
m for PR and MU in the equation refer to the side of
a square area). fyy is a function of the sensor signal-to-
noise ratio related to sensor optics and atmospheric in-
terference. For optical sensors, a number of pixels are
contaminated by edge effects of the MU due to atmo-
spheric scattering (often termed “adjacency effect”) and
sensor modulation transfer function (MTF) (Slater,
1980). For SAR data, low sensor S/N results in “speckle”
which must be filtered, resulting in a degradation of PR.
For aircraft-based video cameras flown at 2300 m,
Moran et al. (1996a) found that fon=10 (e.g., PR must
be 1 m to manage an MU of 10 m) based on analysis of
uniform targets. fi is a function of the image registration
accuracy (RA); thus, assuming the accuracy of registra-
tion is to within 1 pixel, fra=1; otherwise, faa>1.

There are other considerations in determination of
PR for PCM applications. In some cases, the objective
of using RS is not to characterize an MU, but rather to
determine the edge of an anomaly, such as a weed infes-
tation. In that case, Eq. (1) could still be used to deter-
mine PR but the left side of the equation would be the
“edge width” and fyx would be smaller than the value
needed to characterize an entire MU. One must also
consider the unique case in which the objective is early
detection of a seasonally variable anomaly (e.g., insect in-
festation) to avoid extreme economic damage. In such
cases, PR must be fine enough to detect a very small MU.

Turnaround Time

The turnaround time (Ty) is the total time the user can
afford to postpone treatment while waiting for the de-
sired, processed information. Thus, Ty includes both the
delivery time from acquisition to user and the processing
time for conversion of raw data to information. The rela-
tion between Ty, image delivery time (Tp) and processing
time (Tp) is

T>Tp+Th. (2)

The estimates of image Tp from acquisition to user for
the sensors listed in Table 1 are the best times quoted
by the companies responsible for delivery. Expedition
comes at a cost. For example, 3-day delivery of Landsat
TM scenes from EOSAT Corp. will result in image costs
of three times the normal price. Regarding processing
time, estimates had to be made of the time it would take
to process the aircraft- or satellite-based data. For air-
craft-based data, we assumed that all preprocessing
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Figure 1. Estimated requirements for manage-
ment unit size and image turn-around time for
PCM applications identified in the third section
(summarized in Table 2). Also included are the
sensor specifications [according to Egs. (1)~(3)]
for the Landsat5 Thematic Mapper sensor for
measurements of surface reflectance and tem-
perature (L5R and L5T, respectively) and the
SPOT High Resolution Visible (HRV) sensor
for multispectral and panchromatic bandwidths
(SMS and SP, respectively). The black dashed
lines delineate nonexclusive regions that might
be best for tractor-based, handheld, small-air-

Managemeant Unit (m)
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craft-based, or current satellite-based sensors.
Note that both axes are based on a logarithmic
scale (also in Figs. 2 and 3).

(frame grabbing, correcting for vignetting, line-shifting,
and band-to-band registration) would be automated and
would take 4 h. We took into account two types of geo-
metric registration and mosaicing. Manual registration,
based on ground control points, would take 30 min per
frame and we limited the time to 8 h, allowing only 16
frames to be registered to an accuracy of 1 pixel (fra=1).
Automated registration, based on a GPS and information
about pitch, yaw and roll, would take 4 h for up to 100
frames and would result in registration accuracy of 20
pixels (fra=20). For satellite images, we estimated that
cloud screening and manual geometric registration
(fsa=1) would take 8 h total. For all optical images, at-
mospheric correction would be accomplished in 4 h; it
would be accomplished using an LUT-based RTM for
satellite-based data, and deployment of reference targets
during flight for aircraft-based data. Correction for bidi-
rectional effects would be accomplished with a modeling
approach and would take another 4 h. Thus, the follow-
ing are estimates of processing time (under best condi-
tions) for aircraft- and satellite-based images:

e Processing aircraft-based frames with manual reg-

istration: 24 h, fpa=1, 16 frames
* Processing aircraft-based frames with automatic
registration: 20 h, fea=20, 100 frames

* Processing optical satellite-based images: 16 h,

fRA= 1

Repeat Cycle

The revisit period (RP) is the user’s requirement for re-
peat image acquisitions for the specific farm manage-
ment application. To meet PCM revisit requirements,
one must account for cloud interference in optical image
acquisition and scheduling conflicts with pointable sen-
sors. There is evidence that in many locations three out
of every four possible satellite acquisitions will have ex-

8 12h 1dy 2dy 1 mo

Tutn-Around Time

cessive cloud interference (Marshall et al., 1994).
Though the flexibility of pointable satellite-based sensors
allows a greater chance of acquiring cloud-free images,
Moran (1994) found that up to three fourths of the re-
quested images were usurped by the requests of other
users. Thus, RP for sensors on a fixed repeat cycle (RC)
should be a function of the probability (0 to 1) of cloud
interference (f¢) and of scheduling conflicts with other
users (fs), where

RC=RP[1-{fe+fs—ffs)l, (3)

and both f; and f; can be as large as 0.75 for satellite-
based sensors. Aircraft-based systems will have more
flexibility.

In some cases, the RP required by the application is
coarse (e.g., requests every 6 months) but the timing of
the request is crucial and inflexible (e.g., linked to crop
phenology or the time of other sampling). In such cases,
the use of orbiting, pointable sensors may be cost pro-
hibitive. For example, SPOT Image Corp. charges an ex-
tra $2000 (nearly twice the normal cost) for requests of
image acquisitions guaranteed on a certain date or in a
narrow time interval.

Synthesis Demonstration

For each PCM application, we made estimates of the
logical size of the management unit (ranging from 1 m
to 1 km), the turnaround time from image acquisition to
map product, the requirements for image coverage and
repeat acquisitions, and the potential spectral region.
Based on Egs. (1)—(3) and these estimates of MU, Ty,
and RP, it was possible to make a tentative synthesis of
opportunities and limitations for each PCM application
with existing sensors. As an example, the specified appli-
cation requirements were plotted by attributes of the
Landsats TM and SPOT3 HRV sensors. In each case,
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(frame grabbing, correcting for vignetting, line-shifting,
and band-to-band registration) would be automated and
would take 4 h. We took into account two types of geo-
metric registration and mosaicing, Manual registration,
based on ground control points, would take 30 min per
frame and we limited the time to 8 h, allowing only 16
frames to be registered to an accuracy of 1 pixel (fy,=1).
Automated registration, based on a GPS and information
about pitch, yaw and roll, would take 4 h for up to 100
frames and would result in registration accuracy of 20
pixels (fz=20). For satellite images, we estimated that
cloud screening and manual geometric registration
(fua=1) would take 8 h total. For all optical images, at-
mospheric correction would be accomplished in 4 h; it
would be accomplished using an LUT-based RTM for
satellite-based data, and deployment of reference targets
during flight for aircraft-based data. Correction for bidi-
rectional effects would be accomplished with a modeling
approach and would take another 4 h. Thus, the follow-
ing are estimates of processing time (under best condi-
tions) for aircraft- and satellite-based images:

* Processing aircraft-based frames with manual reg-
istration: 24 h, fm:l, 16 frames

* Processing aircraft-based frames with automatic
registration: 20 h, fu=20, 100 frames

* Processing optical satellite-based images: 16 h,
fra=1

Repeat Cyele

The revisit period (RP) is the user’s requirement for re-
peat image acquisitions for the specific farm manage-
ment application. To meet PCM revisit requirements,
one must account for cloud interference in optical image
acquisition and scheduling conflicts with pointable sen-
sors. There is evidence that in many locations three out
of every four possible satellite acquisitions will have ex-
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Turn-Around Time
cessive cloud interference (Marshall et al., 1994).

Though the flexibility of pointable satellite-based sensors
allows a greater chance of acquiring cloud-free images,
Moran (1994) found that up to three fourths of the re-
quested images were usurped by the requests of other
users. Thus, RP for sensors on a fixed repeat cycle (RC)
should be a function of the probability (0 to 1) of cloud
interference (fc) and of scheduling conflicts with other
users (fs). where

RC=RP[1—(fo+f—ffs)]. (3)

and both fo and fs can be as large as 0.75 for satellite-
based sensors. Aircraft-based systems will have more
flexibility.

In some cases, the RP required by the application is
coarse (e.g., requests every 6 months) but the timing of
the request is crucial and inflexible (e.g., linked to crop
phenology or the time of other sampling). In such cases,
the use of orbiting, pointable sensors may be cost pro-
hibitive. For example, SPOT Image Corp. charges an ex-
tra $2000 (nearly twice the normal cost) for requests of
image acquisitions guaranteed on a certain date or in a
narrow time interval.

Synthesis Demonstration

For each PCM application, we made estimates of the
Iogical size of the management unit (ranging from I m
to 1 ki), the turnaround time from image acquisition to
map product, the requirements for image coverage and
repeat acquisitions, and the potential spectral region.
Based on Egs. (1)-(3) and these estimates of MU, T,.
and RP, it was possible to make a tentative synthesis of
opportunities and limitations for each PCM application
with existing sensors. As an example, the specified appli-
cation requirements were plotted by attributes of the
Landsats TM and SPOT3 HRV sensors. In each case,
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we assumed fyn=10, fzs=1, Tp=48 h, T,=16 h, and
RC=16 days for TM and 3 days for HRV. It is apparent
from the results presented in Figures 1-3 that such satel-
lite-based sensors have limited application for seasonally
variable conditions in PCM, mainly because they are
constrained by infrequent repeat cycles and coarse
pixel resolution.

Dashed lines were drawn on Figures 1-3 to delin-
eate the PCM applications that might have greatest po-
tential for current satellite-based sensors or sensors
mounted on small aircraft. These delineations are not ex-
clusive since many applications could be accomplished
with both aircraft- and satellite-based sensors or ground-
and aircraft-based sensors. Potential for use of upcoming
satellite sensors and sensors aboard large aircraft are dis-
cussed in the next section.
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revisit period and image turn-around time for
PCM applications identified in the third section
(with same internal labeling as Fig. 1).

RECOMMENDATIONS

The following general recommendations for the use of
RS in PCM are based on our estimates of PCM applica-
tion requirements and an assessment of current RS tech-
nology (Figs. 1-3). Considering that both RS and PCM
technology and methodology are rapidly improving, these
recommendations may quickly be obsolete. Nonetheless,
recommendations for feasibility were made in Table 2
and organized into four groups for discussion: images
from current satellite-based sensors, raw and calibrated
images from aircraft-based sensors, and images from fu-
ture satellite-based sensors.

Though currently orbiting pointable sensors can pro-
vide the pixel resolution and frequent revisit required for
many applications, it is still difficult to obtain images for
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Figure 3. Estimated requirements for sensor re-
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visit period and management unit size for PCM
applications identified in the third section (with
same internal labeling as Fig. 1).
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we assumed fon=10, fz,=1, Tp=48 h, T,=16 h, and
RC=16 days for TM and 3 days for HRV. It is apparent
from the results presented in Figures 1-3 that such satel-
lite-based sensors have limited application for seasonally
variable conditions in PCM, mainly because they are
constrained by infrequent repeat cycles and coarse
pixel resolution.

Dashed lines were drawn on Figures 1-3 to delin-
eate the PCM applications that might have greatest po-
tential for current satellite-based sensors or sensors
mounted on small aircraft. These delineations are not ex-
clusive since many applications could be accomplished
with both aircraft- and satellite-based sensors or ground-
and aircraft-based sensors. Potential for use of upcoming
satellite sensors and sensors aboard large aircraft are dis-
cussed in the next section.
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Table 2. Evaluation of RS as a Source of Information for PCM Applications Using Sensors Aboard Small Aircrafts, Sensors
Aboard Currently Orbiting Satellites, and Sensors Planned for Future Commercial Satellites.”

Ar  Ac CS FS

Converting Point Samples to Field Maps

1. Ons-site measurements of soil and crop properties could be combined with multispectral imagery to produce
accurate, timely maps of soil and crop characteristics for defining precision management units v v VvL /

Mapping Crop Yield

2a. Multispectral images obtained late in the crop growing season could be used to map crop yields with

approaches as simple as regression or in combination with agro-meteorological models v
2b. Remote sensing information could be combined with crop growth models to predict final yield

Mapping Soil Variability

vL v
/L v

AN

3a. Multispectral images obtained when soils are bare could be used to map soil types relevant to PCM with

approaches based on models and/or on analysis of single or multiple image acquisitions v/

<\

VL v

3b. Maps of spectral variability (obtained under conditions of either bare soil or full crop cover) may prove

useful for revision of maps of management units

Monitoring Seasonally Variable Soil and Crop Characteristics

4a. Soil moisture content

4b. Crop phenologic stage

4c. Crop biomass and yield production

4d. Crop evaporation rate

4e. Crop nutrient deficiencies

4f. Crop disease

4g. Weed infestation

4h. Insect infestation
Determining the Cause of the Soil/Crop Variability

5a. RS could providing accurate input information for agricultural decision support systems (DSS)
5b. RS information could be combined with agro-meteorologic models to determine cause of soil/crop variability
5c. Hyperspectral sensors could be used to determine cause of soil and crop variability

VL v

AN

W
W

W

SN SSNSSSNSsSSsS N

NSNS NN N

Mapping Spatially Distributed Information on Meteorological/Climate Conditions
6. Multispectral images of coarse spatial resolution and fine temporal resolution should be used to produce local
or regional maps of meteorological parameters such as insolation, PAR, rainfall, and others v

Producing Fine-Resolution Digital Elevation Data

7. Accurate, fine-resolution DEMs could be produced from stereopairs of aerial or satellite images v v v

Addressing Time-Critical Crop Management (TCCM) Applications

8. For TCCM, multispectral images from aircraft-sensors could be used as a quick means of assessing the extent

of the damage and identifying management units for damage control

v

* A: data from sensors aboard small aircrafts, where Ar: raw image data and Ac: calibrated data converted to values of reflectance, temperature or
SAR backscatter; CS: data from sensors aboard currently orbiting satellites; FS: data from sensors planned for future commercial satellites. The check
mark (v) indicates that the application is appropriate for the designated sensor; vL indicates that the application is appropriate, however the fields
must be large; and v'W indicates applications which are only appropriate “within fields” because the data are not calibrated and cannot be reliably

compared over time or space.

specific dates (due to conflict with other users and exces-
sive costs). Thus, many applications may not be feasible
with currently orbiting, pointable sensors. There is more
flexibility in applications that require an image during
bare soil conditions than in those requiring images during
specific crop phenologic stages. Another big limitation of
currently orbiting satellite sensors for PCM is revisit
time. If you can only expect to obtain one of four acqui-
sitions, then even coverage with a pointable sensor may
be available only every 12 days (Moran, 1994). The most
promising approaches to overcome this limitation may be
synergy of data from multiple sources and use of physical
models to supplement intermittent RS information.

On the whole, current satellite-based sensors have
little potential for most PCM applications due to coarse
spatial resolution and long repeat cycles. However, they
may be useful for mapping local or regional meteorologi-
cal parameters and producing high-resolution, accurate
DEMs. For very large fields, current satellite-based sen-

sors could have limited utility in converting point sam-
ples to field maps of soil and crop properties, mapping
seasonally stable crop or soil variability, and predicting
final field-scale yield.

Regarding aircraft-based images, difficulties in cali-
bration and geometric correction may preclude data
from small aircraft for use in many applications. Only
those applications that require single field coverage are
suitable for single frame video applications. Whole-farm
applications will require some frame mosaicing but may
be feasible with manual registration. Applications cov-
ering the local area will likely require an automated reg-
istration procedure.

The options best suited for raw data from aircraft-
based sensors (uncalibrated and not atmospherically cor-
rected) include converting point samples to field maps
of soil/crop properties, mapping crop/soil conditions with
regression equations, revising maps of management units
within season, and mapping damage based on on-site



w (spueq ) (IAATOd) 9duesgey
156 LVOSN 960-CK0  S.yHed O jo Aoy
uwy ¢ YIdTOd HHAJTOd -O9II(J pUe UOLEZLIE[OJ
360280 (v )
L0590 OSN
29°0-2S0 JI91OUW0IaNEIS VSYN
A[rep MINAY snou  (YIN ‘9[qBs1A) W 9] 08'0-0¥0 19j0uIopeY (YINAY) - (9661
SUIT} §S0I0 ‘sep ¢ K1oa0 o3 -oxypuAs-uns ‘(onetmorypued) 66°¢T BL0-3C0 PoYeIjul IeaN ur youney)
98y Teuoymbs ggigT  -19400 Teqo[8 ‘skep T3 ‘Sumiqio re[0q w g HINAV LVOSN HINAV Pue S[qISIA PoOUBADY SOAAav
(spueq ¥) (4STIN)
m%ﬂ@ @ E N@.H ‘ur Oﬁm ww?owo H@u@EOM@Nm Ohuowﬁmm
USIN USIN USIN SurSew] o3ue-nnp
(spueq 9}
skep 91 (rewzamy) W 06 £r'5-09'1 (gALSY) 193
IRUIMS (MIMS) W 0€ ‘(spueq ¢) -owoIpRY SUBIPIY
skep g ‘(JIN ‘o[qrsia) ux g1 (spueq g) 98'0—2S°0 pue uoIsSIu TRULIOY],
HINA HALSV HHLSV gI1¢'8 HHLSV wog 9oedg paoueapy
(spueq 31)
(JIL MIN ‘SIA) ¥6'0-8%'0
wy T (MIMS ‘(spueq ¥)
YIN ‘STA) WY §°0 €1 LY 0
snou (YIN ‘O1qrsia) ‘(spueq ) (N-STAOI) (8661
skep g-1 -OIfouAs-uns ury g0 (spueq LT) 18°0-990 1930umi0x0adg Burdew ut youne])
q s 0801 SIGOW  ‘BubmqIo rejoq SICON EFI-8E STAOW UONN|0SaY SIEISPON NV-SOT
(@) 4asn 03 (uruy) aphy waday SOUSILILIDIDY)) (4d) (2HgD) (wml) (wrl ) LOSUDS 23)]2IDS
uomsinbov wosf  uomsinboy 2poN-ffo PRGLO uoynjosaY 1ox1d yvs JoUY ], sy
awyy hasayaq  vp( Jo aunf woiSo agoads

336 Moran et al.

SOQSLIROBIRY)) [E)NGIO PUe ‘Tonn{osay [oxId ‘wotdey [enoadg mery, yim Juoe siosuag paseq-aneres urmoodn swog g 29,



Remote Sensing in Precision Crop Management 337

UMOID T}

q 8% 03 uru g1

U 8¥¥¢

Y 8% 03 ulu g

Sunwow oyey

Gunurowr oyer|

Surwrow oye|

Sumuwiowr oyery

snou
(son[ores ¥ .o.ﬁoﬁ&w.csm
TAIA) UNW G UL SO, f"§6 UORBUIDU]

snou
-oIpuAs-uns
skep > ,6"L6 uoneuIoUL

snou
-oxyouAs-uns
skep ¢—T1  “,1'86 UOHBUIDUL

snou
-OIouAs-uns
skep ¢ € L6 UOHRUIOU]

£QT€3'T
HIMS) W 00T
(991651
HIMS) W 0T
(JIN/R[ISIA) W O]

(fenoadsmynur)
w g ‘(orew
-onpued) w g ‘w T

(femoodsnynur)
w § ‘(donew
-oxyoued) wr T

(fexyoodsnymur)

w § ‘(oryewt

-oxypued) w g
w T pugPmo

([exwodsnymur)

w gf ‘(ouew

-oxgoued) ur ¢
pag Ated

£aT-¢31
G9T-¢C'T
06'0-9L0
69°0-€9°0
65°0-€5°0
BC0SF0
060-9L°0
69°0-€9°0
090250
TC0SH0
06'0-SF0
06'0-3L°0
69°0-€9°0
090350
BC0-SH 0
06'0-S%0
06°0-LL0
690-€9°0
6570650
%S0-SF0
06'0-SF0
pugpPIG
68°0-6L0
89°0-19°0
680050
08°0-SF0
pag Ated

(6661
youne[) 1g 90IN0say

(L66T
youney) 7-mIAAGIO

(1661 YoUNET) (STS)
woysdg SwiSewy ooedg

(8661
qoune|) pugeme)

(2661
youne|) pig Apeq

13 90Imosay

SOOUSIIG

[FNGI0

Surdewy
aoedg

YoreM qHeH



338 Moran et dl.

Table 4. Some Sensors aboard Large Aircraft

Spectral Spectral
Number of Bandwidth Sampling Sensor
Sensor Channels (um) Interval Resolution Reference
Advanced Solid-State Array Spec- 30 0.45-0.88 14 nm 0.85 mrad Irons et al., 1991
trometer (ASAS)
Airborne Visible-Infrared Imaging 220 0.41-2.45 9.4~9.7 nm 20 m Vane, 1987
Spectrometer (AVIRIS)
Thermal Infrared Multispectral 8 8.2-12.2 0.4-14 ym 2.5 mrad Aircraft Data Facility, NASA-Ames Re-
Scanner (TIMS) search Center, Moffet Field, CA
Thematic Mapper Simulator 8 0.45-12.3 0.06-1.4 ym 2.5 mrad Aircraft Data Facility, NASA-Ames Re-
(TMS-NS001) search Center, Moffet Field, CA
Thematic Mapper Simulator 10 0.38-14.0 0.02-5.5 ym 2.5 mrad, EG&G Energy Measurements Remote
(TMS) Daedalus FOV 86° Sensing Laboratory (RSL), Las Vegas,
NV
Airborne MultiPod System Multisensor Daedalus:  See TMS 2.5 mrad, DOE Office of Arms Control and non-
(Daedalus, CASI, SAR) CASIL: 0.4-0.9 gm (2 nm) FOV proliferation, Washington, DC
SAR: Ku (15 GHz) 15-60°,
1-3m

knowledge of crop conditions. The options increase for
aircraft-based data that has been converted to values of
surface reflectance, temperature or SAR backscatter.
These include predicting final yield with models and an-
cillary data, monitoring seasonally variable crop and soil
conditions, and determining the cause of crop/soil spatial
variations (with ancillary data).

Another sensor system that is currently not being
used to its potential for PCM is the fleet of large aircraft-
based systems flown by NASA and some defense con-
tractors (Table 4). These systems can provide high qual-
ity, calibrated data at fine resolutions (depending upon
flight altitude) at wavelengths including hyperspectral,
wide-band multispectral, and SAR. These systems are
not suited for general crop monitoring purposes because
of the excessive cost of deployment and the lengthy turn-
around time for raw data delivery (generally 1 month to
6 months); however, they should be considered for re-
search related to PCM, and for PCM applications with
long turn-around times and infrequent revisit require-
ments, such as determining management units based on
soil or yield variability.

Since many of the applications identified here re-
quire information at pixel resolutions from 1 m to 100
m and revisit times of 1 day to 1 week (Fig. 3), the up-
coming launches of the EOS-AM and ADEOS satellites
will not hold much potential for use in many PCM appli-
cations (see specifications in Table 3). However, the up-
coming launches of commercial earth observation satel-
lites (Table 3) will meet many of the PCM requirements.
Data will potentially be available in panchromatic and
multispectral visible and NIR wavelengths at 1-15 m
pixel resolutions, respectively. The sensor repeat cycle
will be every 3 days and the raw data turnaround time
could be as quick as 15 min. With these sensor specifi-
cations, the biggest deterrents to use in PCM will be
data management (Allan, 1990) and the effects of bidi-

rectional sensor viewing. However, since none of the
planned commercial satellites will support thermal or
SAR sensors, many promising RS applications for PCM
discussed in previous sections will still not be possible.

CONCLUDING REMARKS

Image-based RS can provide information for many PCM
applications for which information is now lacking. Some
opportunities are possible for currently orbiting satellites,
and many more opportunities are possible with currently
available sensors aboard small aircrafts. Image-based re-
mote sensing has a unique role for monitoring seasonally
variable crop and soil conditions, and providing crop de-
velopment stage information for time-specific crop man-
agement (TSCM) and near-real-time information for
time-critical crop management (TCCM).

The limitations for image-based applications are
mainly due to instrument design. Current satellite-based
sensors have fixed spectral bands that may be inappropri-
ate for a given application, spatial resolutions too coarse
for within-field analysis, inadequate repeat coverage for
intensive agricultural management, and long time peri-
ods between image acquisition and delivery to user. Air-
craft-based sensors avoid these limitations, but are diffi-
cult to calibrate and the frame-based output is hard to
register to map coordinates for large area coverage.
There is hope that such limitations will be overcome by
the upcoming launches of commercial satellite-based
sensors, rapid advancements in digital camera technol-
ogy, and the cooperative deployment of defense-related
aircraft-based sensors for agricultural applications.

The potential market for RS products in PCM is
good. Holt and Sonka (1995) envision that PCM will suc-
ceed with the collective knowledge and experience of
specialists, assembled and integrated through team ef-
forts. They foresee a long sequence of intermediate
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Figure 4. An infrastructure that may lead to
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widespread adoption of image-based remote
sensing for precision crop management.

products, where each item of information and technology
will fit in the PCM system and each “value-added” prod-
uct will have a market. Some team members will simply
purchase components and services from specialized sup-
pliers and merely assemble the final product. Searcy
(1995) predicted that much of the collection of spatial
data for PCM will be done by contract, on a fee-for-ser-
vice basis. This scenario bodes well for use of RS in
PCM since the acquisition and processing of spectral
data is a specialized science with a defined product.

An infrastructure that may have promise for incorpo-
rating aircraft- or satellite-based RS technology into
PCM is illustrated in Figure 4. There appear to be three
stages of image processing that could lead to a useful
product for farm managers. In stage one, the images are
acquired and processed to values of surface reflectance,
temperature or SAR backscatter and registered to farm
coordinates. This requires engineering skills for instru-
ment development, knowledge of optics (possibly atmo-
spheric science), understanding of remote sensing, and
expertise with computers. In the next stage, these images
are converted to physical crop and soil information, such
as images of weed infestations, insect infestations, crop
water stress, etc. This requires a background in agron-
omy, knowledge of physics and remote sensing, and ex-
perience in computer modeling. In the third stage, this
distributed information about crop and soil conditions is
interpreted with the assistance of a DSS to produce
maps of management units for variable rate material ap-
plication. This requires experience with DSS and GIS,
understanding of modeling and farm management and a

Computer
GPS

background in agronomy. These maps are provided to
the farm manager for support in farm management deci-
sions. The farm manager should have variable rate appli-
cators and a tractor-mounted GPS system and should be
able to determine the proper management strategy for
the farm. The four “entities” portrayed in Figure 4 illus-
trate the four requirements for skills and knowledge nec-
essary to produce the three intermediate products; actu-
ally, a single company could encompass the skills of the
first three entities and provide the final product to the
farmer. However, until such an infrastructure is in place,
there is little hope for widespread adoption of image-
based remote sensing for PCM.

Future work should be focused on determining
which RS applications listed in Table 2 are most eco-
nomically beneficial and technically feasible. Season-long
pilot projects with aircraft-based or satellite-based sen-
sors designed specifically to investigate the economic and
scientific viability of RS products for PCM applications
should be given high priority (e.g., Moran et al., 1996b;
Hough, 1993). These projects should be designed with
input from the end user (farmers and consultants), and
the potential commercial provider. Such validation will
provide the confidence in RS that is required for tech-
nology transfer and eventual commercial development.

Thanks go to Tom Mitchell for the innovative design of the
color figures that so aptly summarized the information in Ta-
bles 1 and 2. We have many reviewers to thank, especially Ga-
len Hart, Marvin Bauer, Tom Clarke, Paul Pinter, and Chandra
Holifield. We would like to thank all the scientists who shared
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their thoughts on this topic, and sent us their published and
draft manuscripts.
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Appendix. Acronym List
ADEOS  ADvanced Earth Observing System LUT Lookup Table
AM-1 Active Microwave METEOSAT  Meterological Satellite
ASAS Advanced Solid-State Array Spectrometer MISR Multi-angle Imaging Spectro Radiometer
ASTER Advanced Spaceborne Thermal Emission and MODIS-N MOderate Resolution Imaging Spectrometer
Reflectance Radiometer MTF Modulation Transfer Function
ATSR Along-Track Scanning Radiometer MU Management Unit
AVHRR  Advanced Very High-Resolution Radiometer NDVI Normalized Difference Vegetation Index
AVIRIS  Airborne Visible-Infrared Imaging Spectrometer NIR Near-Infrared
AVNIR Advanced Visible and Near Infrared Radiometer NSCAT NASA Scatterometer
BRDF Bidirectional Reflectance Distribution Function OPS OPtical Sensor
CASI Compact Airborne Spectrographic Imager OPSVNIR OPS Visible and Near IR (VNIR) Radiometer
CCD Charge Coupled Device P Panchromatic
CERES  Cereal growth model PAR Photosynthetically-Active Radiation
CWSI Crop Water Stress Index PCM Precision Crop Management
DEM Digital Elevation Model POLDER Polarization and Directionality of the Earth’s Reflectance
DGPS Differential GPS PR Pixel Resolution
DN Digital Number RA Registration Accuracy
DSS Decision Support System RADARSAT  Canadian RADAR SATellite
DSSAT Decision Support System for Agrotechnology Transfer ~ RC Repeat Cycle
EOS Earth Observing System RP Revisit Period
EOSAT  Earth Observation Satellite Company RS Remote Sensing
ERS European Remote-sensing Satellite RTM Radiative Transfer Model
ET Evapotranspiration SAR Synthetic Aperature Radar
Sarar Fraction Absorbed PAR SORKAM Sorghum growth model
Je Function of cloud interference SPOT Systeme Pour 'Observation de la Terre
fra Function of registration accuracy SUCROS Crop growth model
fs Function of scheduling conflicts SWIR Shortwave Infrared
fom Function of signal/noise ratio Tr Turn-around time
FOV Field of View Tp Delivery time
GIS Geographic Information Systems Te Processing time
GOES Geostationary Operational Environmental Satellite TCCM Time-Critical Crop Management
GPS Global Positioning System TIMS Thermal Infrared Multispectral TIR
HRV High Resolution Visible ™ Thematic Mapper
HS Hyperspectral T™MS Thematic Mapper Simulator
IBPM . Integrated Pest Management . TSCM Time-Specific Crop Management
IR Infrared UTM Universal Transverse Mercator
IRS Indian Remote-sensing Satellite VEG Knowledge-based canopy reflectance model
JERS Japanese Earth Remote-sensing Satellite VI Vegetation Index
LAI Leaf Area Index VISSR Visible and Infrared Spin Scan Radiometer
LISS Linear Imaging Self Scanning Sensor VRT Variable Rate Technology
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